
Bachelor Thesis

Slitherlink Reloaded

David Westreicher (0716064)
david.westreicher@student.uibk.ac.at

16 November 2011

Supervisor: Dr. René Thiemann

mailto:david.westreicher@student.uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass
ich die vorliegende Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich
oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche
kenntlich gemacht.
Ich erkläre mich mit der Archivierung der vorliegenden Bachelorarbeit einver-
standen.

Datum Unterschrift

Abstract

This bachelor thesis is based on the work of Lorenz Thuile’s thesis ”Slitherlink”
[10]. While Lorenz’s solutions of the puzzles are generated through patterns
and a trial-and-error solver, the aim of this thesis is to encode the rules of
Slitherlink into a boolean satisfiability problem (SAT) and evaluate the pros
and cons of this approach. Furthermore the GUI of the existing application
was improved and the solver was extended to handle degenerated puzzles.

Contents

1. Introduction 1
1.1. SAT Solving . 1
1.2. Content . 2

2. Slitherlink 3

3. SAT Encoding for Slitherlink 4
3.1. Boolean formulae and SAT . 4
3.2. Formal Definition of Slitherlink 5
3.3. Boolean Helper Functions . 7
3.4. Encoding Slitherlink Rules 1 & 2 9

4. Tackling the 1 Loop Problem 10
4.1. Reachability Encoding . 10
4.2. Mixed Procedures . 12

4.2.1. Fill Algorithm . 12
4.2.2. Linecount Algorithm . 13
4.2.3. Optimizations . 16

5. Implementation 18
5.1. Class Hierarchy . 18

5.1.1. Propositional Logic Implementation 18
5.1.2. Encoding Implementation 19

5.2. Generating a CNF . 20
5.2.1. Standard approach . 20
5.2.2. Tseitin . 20

5.3. Trivial Cases . 20
5.4. GUI Improvement . 21

6. Evaluation 23
6.1. Performance . 23
6.2. Encoding Sizes . 26

7. Conclusion 27

Bibliography 28

A. Trivial Cases 29

vi

1. Introduction

Slitherlink is one of the most popular Nikoli logic puzzles and was invented
in June 1989. It is also known as ”Fences”, ”Takegaki”, ”Loop the Loop”,
”Loopy”, ”Ouroboros”, ”Suriza” and ”Dotty Dilemma” [5]. In the year 2000
Slitherlink was proved to be NP-complete [12], which means that if NP 6= P
holds it is not possible to always solve a puzzle in polynomial time and that
any problem in NP can be reduced to an instance of Slitherlink.
In the previous work [10], Slitherlink instances were solved with a combination
of finding patterns and a trial-and-error solver. To find these special patterns
a huge method (over 7000 lines of code) was constructed. This method is not
suited for a formal proof of correctness, because of its length.
The aim of this thesis is to try a different approach to solve the logic puzzle,
namely ”boolean SAT solving”.

1.1. SAT Solving

SAT stands for the satisfiability problem of propositional logic. A valid solution
of a SAT instance is an assignment of boolean variables which make a boolean
formula evaluate to true. To find such assignments, a SAT solver, like SAT4J
[2] or MiniSAT [1] is used. To solve a given problem using SAT one has to:

• encode the problem as a boolean formula

• convert the formula into CNF (if the SAT solver accepts only formulas in
CNF)

• use a SAT solver to find satisfying assignments of the variables

• and finally interpret these assignments with a decoder to get a solution
of the problem.

Problem
=====⇒ Encoder

CNF
===⇒ SAT

Solver

satisfying
=======⇒
assignment

Decoder
Solution

=====⇒

Figure 1.1.: The process of using SAT for problem solving

SAT solving has gained much popularity in recent years, because of faster
computers and faster algorithms. Even large instances with millions of clauses
and hundred thousands of variables are nowadays solvable in seconds. Some
applications of SAT solving include:

1

1 Introduction

• Planning: Given an initial state find actions with preconditions and effects
which lead to a given goal state. E.g.: SATPLAN [11], ...

• Dependency Management: Equinox p2 is the OSGi implementation of
Eclipse. It is a framework which manages for instance the plugin interface.
Equinox, thereby uses SAT-techniques to resolve dependency conflicts of
the plugins [6].

1.2. Content

This thesis begins with a short introduction to the game of Slitherlink in Section
2. To solve Slitherlink puzzles with SAT, we have to generate a propositional
formula which encodes the rules of the game. In Section 3 we present one
encoding of the Rule 1 and two encodings of Rule 2. Rule 3 is observed by
two different approaches discussed in Section 4. One further task of the thesis
was to integrate the SAT-solving method in the existing application, which is
described in Section 5. Finally we compare the runtimes of the existing solver
with the ones presented in this work in Section 6.

2

2. Slitherlink

Slitherlink is played on a grid with m×n cells. Each cell can contain a number
between 0 and 3 and is surrounded by 4 lines that can be either set or not set.
The goal of the puzzle is to draw a consistent loop (connected lines) between
the cells which also complies to the following rules:

1. The value of the cell must be the same as the number of surrounding lines.

2. The loop can’t leave the game field and can’t cross itself.

3. There has to be exactly one loop.

Example 2.1. Figure 2.1 shows some puzzles which violate the rules mentioned
above.

(a) Rule 1 is violated (b) Rule 2 is violated (c) Rule 3 is violated

Figure 2.1.: Wrong solutions of Slitherlink puzzles.

Example 2.2. Some examples of correctly solved 3× 3 puzzles.

3

3. SAT Encoding for Slitherlink

Now that we know how to play Slitherlink, we will encode Rules 1&2. But first
of all we give a short introduction to the basics of propositional logic. We begin
by defining what a boolean formula is and what the property satisfiable means.

3.1. Boolean formulae and SAT

In propositional logic a boolean formula is a concatenation of symbols in a
special syntax. The symbols are either:

• Constants: > (”true”) and ⊥ (”false”)

• Propositional variables: x, y, ... which represent a truth value.

• Unary and binary operators:

– Negation: ¬Φ, pronounced ”not Φ”

– Conjunction: Φ ∧Ψ, pronounced ”Φ and Ψ”

– Disjunction: Φ ∨Ψ, pronounced ”Φ or Ψ”

– Implication: Φ→ Ψ, pronounced ”Φ implies Ψ”

• Parentheses: ”(” and ”)” which regulate the precedence of the operators.

The following BNF-syntax describes the language of boolean formulae:

Φ ::= > | ⊥ | x | (¬Φ) | (Φ ∧ Φ) | (Φ ∨ Φ) | (Φ→ Φ)

A common procedure in propositional logic is the evaluation of a formula. For
instance the evaluation of the formula ”(

√
36 = 6) and (’The sun is bright’)” is

true, because each of the arguments of the conjunction evaluates to true.
In the following definitions we introduce the evaluation formally.

Definition 3.1. Let Φ be a boolean formula. The function P : Φ → Vars
returns the set of all variables in Φ.
For instance P (x ∨ (x ∧ ¬y)) = {x, y}

Definition 3.2. An assignment (or model) of a formula Φ is a function f :
P (Φ)→ {>,⊥}, which assigns a truth value to each variable.

Definition 3.3. Let φ be a boolean formula and f an assignment of φ. Then
the evaluation eval : Φ→ {>,⊥} of the formula is defined recursively by:

• eval(p) := f(p)

• eval(¬χ) := > iff eval(χ) = ⊥ and vice versa

4

3.2 Formal Definition of Slitherlink

• eval(χ ∧ ψ) := > iff eval(χ) and eval(ψ) is >

• eval(χ ∨ ψ) := > iff eval(χ) or eval(ψ) is > (inclusive or)

• eval(χ→ ψ) := ⊥ iff eval(χ) = > and eval(ψ) = ⊥

Definition 3.4. We call a propositional formula Φ satisfiable if there exists an
assignment f , which lets Φ evaluate to >.

SAT is the decision problem to check if a given formula is satisfiable or not.
Most SAT solvers also return a satisfiable assignment of the formula, if there is
any.

Example 3.5. Let φ = ((x∨ y∨ z)∧ (x∨¬y)∧ (¬x∧w)). Then φ is satisfiable
by the following assignment:

f : x→ ⊥, y → ⊥, z → >, w → >

3.2. Formal Definition of Slitherlink

To encode an instance of Slitherlink into a SAT-problem, we first need to define
boolean variables, which represent the integral part of the puzzle.

Definition 3.6. An m × n instance of Slitherlink consists of the following
boolean variables:

h0,0 h0,m−1

v0,0 (0, 0) v0,1 . . . v0,m−1 (0,m− 1) v0,m

h1,0 h1,m−1

. . .

. . .

. . .

hn−1,0 hn−1,m−1

vn−1,0 (n− 1, 0) vn−1,1 . . . vn−1,m−1 (n− 1,m− 1) vn−1m

hn,0 hn,m−1

Figure 3.1.: The boolean variables which make up a Slitherlink puzzle

5

3 SAT Encoding for Slitherlink

• Vertical lines: vi,l | (i, l) ∈ {0, ..., n− 1} × {0, ...,m}.

vi,l ≡ vertical line (i, j) is set (3.1)

• Horizontal lines: hk,j | (k, j) ∈ {0, ..., n} × {0, ...,m− 1}.

hk,j ≡ horizontal line (k, j) is set (3.2)

Definition 3.7. For every cell at (i, j) ∈ {0, ..., n− 1} × {0, ...,m− 1} of a
puzzle we define li,j as the set of the surrounding lines:

li,j = {hi,j , vi,j , hi+1,j , vi,j+1} (3.3)

Example 3.8. All lines of the set l1,1 marked in red.

Definition 3.9. For every line hk,j the two sets preHk,j/succHk,j contain the
lines to the left/to the right of hk,j :

preHk,j = {vk,j | k < n} ∪ {vk−1,j | k > 0} ∪ {hk,j−1 | j > 0} (3.4)

succHk,j = {vk,j+1 | j < m} ∪ {vk−1,j+1 | k > 0} ∪ {hk,j+1 | j < m− 1} (3.5)

with (k, j) ∈ {0, ..., n} × {0, ...,m− 1}

Definition 3.10. For every line vi,l the two sets preVi,l/succVi,l contain the
lines to the top/to the bottom of vi,l:

preVi,l = {hi,l−1 | l > 0} ∪ {hi,l | l < m} ∪ {vi−1,l | i > 0} (3.6)

succVi,l = {hi+1,l−1 | l > 0} ∪ {hi+1,l | l < m} ∪ {vi+1,l | i < n− 1} (3.7)

with (i, l) ∈ {0, ..., n− 1} × {0, ...,m}

Definition 3.11. For every corner at (k, l) we define ck,l as the set of all lines
which touch the corner.

ck,l = {vk,j | k < n} ∪ {vk−1,j | k > 0}∪
{hk,j−1 | j > 0} ∪ {hk,j}

(3.8)

Example 3.12. Figure 3.2 and 3.3 show some examples of the pre/succ and c
sets.

6

3.3 Boolean Helper Functions

(a) preH1,1 and its ele-
ments

(b) succV2,2 and its ele-
ments

Figure 3.2.: Examples of pre and succ sets

(a) c1,1 and its elements (b) c3,2 and its elements

Figure 3.3.: Examples of c sets

3.3. Boolean Helper Functions

To express certain properties of the puzzle we define some helper functions
which keep our encodings of manageable length. Let A = a0, . . . , an−1 be a set
of boolean variables.

Lemma 3.13. None(A) returns a formula which is satisfiable iff all ai are ⊥

None(A) =
∧
a∈A
¬a (3.9)

Lemma 3.14. AtLeastOne(A) returns a formula which is satisfiable iff at least
one ai is >

AtleastOne(A) =
∨
a ∈ A (3.10)

Lemma 3.15. AtMostOne(A) returns a formula which is satisfiable iff at most
one ai is >

AtMostOne(A) =
∧

i∈{0,...,n−2}
j∈{i+1,...,n−1}

¬ai ∨ ¬aj (3.11)

Lemma 3.16. ExactlyOne(A) returns a formula which is satisfiable iff exactly
one ai is > and all other are ⊥

ExactlyOne(A) = AtLeastOne(A) ∧AtMostOne(A) (3.12)

7

3 SAT Encoding for Slitherlink

Lemma 3.17. ExactlyOneNot(A) returns a formula which is satisfiable iff
exactly one ai is ⊥ and all other are >

ExactlyOneNot(A) = ExactlyOne(A′)
where A′ = {¬a | a ∈ A} (3.13)

Proof. To prove that ExactlyOneNot(A) = ExactlyOne(A′) holds we substi-
tute ai with a′i = ¬ai:
ExactlyOne(A′) is trivially > iff exactly one a′i is >
Therefore the number of variables which turn out to be ⊥ has to be one.

Lemma 3.18. ExactlyTwo(A) returns a formula which is satisfiable iff exactly
two variables ai and aj, i 6= j are > and all other are ⊥

ExactlyTwo(A) =
∨

i∈{0,...,n−2}
j∈{i+1,...,n−1}

(ai ∧ aj
∧

k∈{0,...,n−1}/{i,j}

¬ak) (3.14)

Proof. We show that the lemma holds in both directions.
Let us assume that we have the assignment where ai and aj , i < j are > and
all ak | k 6= i ∧ k 6= j are ⊥. Then the disjunction ai ∧ aj

∧
k∈{0,...,n−1}/{i,j} ¬ak

evaluates to >, which makes ExactlyTwo(A) evaluate to > and therefore sat-
isfiable.
In the other direction, if ExactlyTwo(A) is satisfiable then exactly one of its
disjunctions evaluate to > and this disjunction contains the positive ai, aj and
the negative ak. We show that exactly one disjunction evaluates to > by the
following proof of contradiction:
Let us assume that we have two disjunctions which evaluate to > in the follow-
ing form

ai0 ∧ aj0
∧

k∈{0,...,n−1}/{i0,j0}

¬ak

ai1 ∧ aj1
∧

k∈{0,...,n−1}/{i1,j1}

¬ak

where (i0, j0) 6= (i1, j1)

Then ai0 or aj0 gets negated in the second disjunction’s ak, because (i0, j0) 6=
(i1, j1). This leads to a contradiction, because the first disjunction states that
ai0 and aj0 are >.

Example 3.19. Let A = {a, b, c}, then
ExactlyOne(A) = (a ∨ b ∨ c)︸ ︷︷ ︸

AtLeastOne

∧ ((¬a ∨ ¬b) ∧ (¬a ∨ ¬c) ∧ (¬b ∨ ¬c))︸ ︷︷ ︸
AtMostOne

ExactlyTwo(A) = (a ∧ b ∧ ¬c) ∨ (a ∧ c ∧ ¬b) ∨ (b ∧ c ∧ ¬a)

8

3.4 Encoding Slitherlink Rules 1 & 2

3.4. Encoding Slitherlink Rules 1 & 2

First we encode the fact that if the cell at (i, j) has the value k, then k of the
surrounding lines (li,j) have to be set. For every cell at (i, j) which contains a
number we add a formula depending on the value of the cell.∧

(i,j)containsNumber

rule1(val(i, j), i, j) (3.15)

rule1(val, i, j) =

None(li,j) if val = 0
ExactlyOne(li,j) if val = 1
ExactlyTwo(li,j) if val = 2
ExactlyOneNot(li,j) if val = 3

The next formula describes the continuity of a line, by simply stating that
each line segment has exactly one predecessor and one successor, we call this
subformula PreSucc:

PreSucc :=
∧
(k,j)

hk,j ⇒ ExactlyOne(preHk,j) ∧ ExactlyOne(succHk,j)∧∧
(i,l)

vi,l ⇒ ExactlyOne(preVi,l) ∧ ExactlyOne(succVi,l)

(3.16)
This encoding also garantuees that no lines cross each other, because therefore
the number of predecessor or successor has to be > 1.
An alternative encoding states that the number of lines crossing the point ck,l
has to be two or zero, we call this subformula TwoLine. Like the other encoding
mentioned above, it also encodes that no lines cross each other.

TwoLine :=
∧
(k,l)

None(ck,l) ∨ ExactlyTwo(ck,l) (3.17)

To refer to the encodings later we defineRule1 as the formula generated in Equa-
tion 3.15. Furthermore PreSucc1,2 := Rule1 ∧ PreSucc and TwoLine1,2 :=
Rule1 ∧ TwoLine.
With these fairly simple encodings we ensure that the formula is satisfiable iff
Rules 1 and 2 hold. The problem is that the encodings also allow many models
which violate Rule 3. The bigger the puzzle, the more likely it is that there are
two or more loops in the model. Therefore we introduce some methods, which
guarantee that rule 3 is observed.

9

4. Tackling the 1 Loop Problem

To complete the SAT encoding with Rule 3 we present two different approaches:

• Reachability Encoding: the formulas PreSucc1,2 and TwoLine1,2 are ex-
tended with a boolean encoding of Rule 3.

• Mixed Procedures: we use the formula PreSucc1,2 or TwoLine1,2 to gen-
erate models and use an algorithm which decides if these models violate
Rule 3.

4.1. Reachability Encoding

This technique was already used in the encoding of Nurikabe [9]. First we
need a new set of variables fi,j which tells us whether the cell at (i, j) is inside
(fi,j = >) or outside (fi,j = ⊥) of a loop. We propose some kind of filling
algorithm:

• For every cell at the border: if the line at the border is set, than the cell
is inside the loop. Otherwise, the cell is outside of the loop.

• If there is no seperating line between two adjacent cells they must be
at the same side of the loop.

• If there is a seperating line between two adjacent cells they must be at
the opposite side of the loop.

Formally: ∧
j

(h0,j ⇔ ¬f0,j) ∧ (hn,j ⇔ ¬fn−1,j)∧
i

(vi,0 ⇔ ¬fi,0) ∧ (vi,0 ⇔ ¬fi,0)∧
1≤i≤n−1
0≤j≤m−1

hi,j ⇔ ¬(fi−1,j ⇔ fi,j)

∧
0≤i≤n−1
1≤j≤m−1

vi,j ⇔ ¬(fi,j−1 ⇔ fi,j)

(4.1)

Now we can garantuee the compliance of Rule 3 by stating the following
requirements:

1. Every cell within the loop should be connected to all other inner
cells.
If there is more than one loop in an assignment (cf. Figure 4.1(a)) the
requirement would not be fulfilled, because the cells of the first loop would
not have a connection to the other loops without leaving its boundaries.

10

4.1 Reachability Encoding

2. Every cell outside the loop should be connected to a cell which
is at the border.
This is required due to the fact that there exist loops with ”holes” (cf.
Figure 4.1(b)). But if all outer cells are connected to the border of the
puzzle no such holes can exist.

(a) Inner cells not connected (b) Not all outer cells connected to
outer border cells

Figure 4.1.: Puzzles violating the requirements.

Two cells are connected if there exists a path of cells, which all share the
same fi,j value. In [9] a new set of variables Rn(i,j),(k,l) is defined, meaning that

there exists a path from (i, j) to (k, l) with at most n steps. Now we can encode
the properties stated above:

1. The following algorithm encodes the first requirement mentioned above:

a) Find the cell h with the highest value v of the puzzle and ignore the
cell if it is in a corner with value 2.

b) If no such cell could be found return the inefficient encoding:∧
i,j

∧
k,l

(fi,j ∧ fk,l)⇒ Rnmax

(i,j),(k,l) (4.2)

c) Otherwise return:∧
(ni,nj)∈NB∩h

∧
k,l

(fni,nj ∧ fk,l)⇒ Rnmax

(ni,nj),(k,l)
(4.3)

where NB is the set of the neighbours of h

The optimization made in Equation 4.3 reduces the number of clauses
generated from O(n2) to O(n). This is achieved by stating that every
inner cell should be connected to some fixed inner cells. These fixed
inner cells are found by scanning the initial puzzle before generating the
encoding. The number of fixed cells depends on v, the highest value of
all cells.

11

4 Tackling the 1 Loop Problem

2. The second requirement is encoded with:∧
i,j

(¬fi,j ⇒
∨

(k,l)∈BorderCells

Rn(i,j),(k,l)) (4.4)

We define Reach3 as the conjunction of the encodings mentioned above.

4.2. Mixed Procedures

With the basic encoding of Section 3.4 we have a method to quickly generate
possible assignments. These assignments can then be checked by an external al-
gorithm if they fulfill the 1 loop constraint. We present two different algorithms
to check the property:

4.2.1. Fill Algorithm

The ”Fill Algorithm” works by partitioning the puzzle into an inner and into
an outer side of the loop, similar to the encoding in Section 4.1. In order for
this algorithm to work we need a list which saves the cells that were already
visited.

1. Mark the cells of the border which are on the outer side of the loop.

2. Scan the puzzle from top left to bottom right line by line and find the
first vertical line which is set. This is the beginning of the inner loop and
therefore the cell to the right of this line is marked as initial inner cell.

3. Recursively mark adjacent cells if there is no line between them.

4. After the recursion has ended, there exist two possibilities

• if there exist cells which were not marked then the assignment is not
correct

• otherwise all cells were marked and the assignment is correct

A detailed description in pseudocode can be found on Page 13.

To show that this algorithm is valid, one can show that the requirements of
Section 4.1 are fulfilled:

1. Every cell within the loop should be connected to all other inner
cells.
By marking the initial inner cell of the puzzle in step 2, all of the inner
cells of the first loop are marked, when the algorithm ends. If there are
more than one loops, its cells are ignored and therefore not marked when
the algorithm ends, resulting in a wrong assignment.

2. Every cell outside the loop should be connected to a cell which
is at the border and outside of the loop too.
By marking the outer cells of the border in step 1, all of the reachable
outer cells are marked too, when the algorithm ends. This fulfills the
requirement and prevents holes in loops.

12

4.2 Mixed Procedures

Algorithm 1 Fill Algorithm

Input: a n×m Slitherlink puzzle
Output: a boolean which is true iff the puzzle is correctly solved

1: S := ∅ {the set of cells which were visited}
2: Q := ∅ {the set of cells which should be explored next}
3: firstFound := false {true iff the beginning of the loop found}
{Visit the border cells and the first cell of the inner loop}

4: for x := 0 to N − 1 do
5: for y := 0 to M − 1 do
6: if firstFound = false and vx,y then
7: S := S ∪ {sx,y}

firstFound := true
8: end if
9: end for

10: end for
11: for every outer cell at the border bc do
12: S := S ∪ bc
13: end for
{Recursively visit adjacent cells}

14: Q := S
15: while Q 6= ∅ do
16: T := ∅ {temporary set to save the next queue}
17: for s ∈ Q do
18: for every adjacent cell a 6∈ S of s do
19: if no line between a and s then
20: S := S ∪ {a}

T := T ∪ {a}
21: end if
22: end for
23: end for
24: Q := T
25: end while
26: if #S = n ∗m then
27: return true
28: else
29: return false
30: end if

4.2.2. Linecount Algorithm

The ”Linecount Algorithm” was presented in [3]. It works by finding a start
line and following the loop through the pre/successor of each line, counting the
number of lines in the loop. If this number matches the total number of lines,
the assignment has to be correct. The pseudocode of this algorithm is presented
on the next page.

13

4 Tackling the 1 Loop Problem

Algorithm 2 Linecount Algorithm

Input: a n×m Slitherlink puzzle
Output: a boolean which is true iff the puzzle is correctly solved

1: S := {hi,j | i <= n, j < m, hi,j = >} ∪ {vi,j | i < n, j <= m, vi,j = >} {Set
of all set lines}

2: start := null {The start line of the loop}
{Find the start line}

3: for x := 0 to N − 1 do
4: for y := 0 to M − 1 do
5: if start = null and vx,y then
6: start = vx,y
7: end if
8: end for
9: end for

10: removeRecursive(S,start)
11: return #S = 0

Algorithm 3 removeRecursive(S,l)

Input: S the set of remaining lines, l the line to be removed
1: if l ∈ S then
2: S := S\{l}
3: for every predecessor/successor l′ of l do
4: if l′ = > then
5: removeRecursive(S, l′)
6: end if
7: end for
8: end if

Example 4.1. Figure 4.2 shows the ”Fill Algorithm” on a 3× 3 puzzle.

Example 4.2. Figure 4.3 shows the ”Linecount Algorithm” on a 3× 3 puzzle.

14

4.2 Mixed Procedures

(a) (b) (c)

(d) (e)

Figure 4.2.: Fill algorithm: (a) the initial assignment, (b) the border cells are
marked, (c) the first cell of the inner loop is marked, (d) after one
recursion step, (e) return false, because not all cells were marked

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3.: Linecount algorithm: (a) the initial assignment, (b) the start line
was found and marked, (c)- (g) the connected loop is marked re-
cursively, (h) return false, because not all lines were marked

15

4 Tackling the 1 Loop Problem

4.2.3. Optimizations

The Fill and Linecount algorithm work well for smaller puzzles but finding so-
lutions for puzzles with more than 200 cells does not work. The problem is that
the encodings produce many thousands of quite similar ”false” assignments. To
reduce the solution space we propose a method of ”Iterative SAT solving”: If we
get a false assignment from the solver we deduce as much information as pos-
sible, feed the solver with this new information and ask for a new assignment,
without resetting the state of the SAT solver.

SAT Solver
SATsolution +3 Decoder

��

New Information

feed

KS

Solution correct?
Y es +3

No
ks Solution

Figure 4.4.: The Iterative SAT solving process

In the case of Slitherlink we modify the algorithms mentioned above to re-
cursively return all loops but the first of the solver’s assignment. These loops
are added to the solver in negated form, so that the solver ignores these false
loops. With this approach it was even possible to solve 30 × 30 puzzles in a
matter of seconds.

Example 4.3. Figure 4.5 shows the Iterative SAT solving of a 6× 6 puzzle.

Another optimization was to use the prework solver of [10]. The prework
solver uses a pattern matching algorithm to iteratively find certain Slitherlink
patterns 1. We use this prework solver to generate a conjuction of the set and
unset lines and feed the conjunction to the SAT solver.

1Some patterns can be found at http://en.wikipedia.org/wiki/Slitherlink#Solution_

methods

16

http://en.wikipedia.org/wiki/Slitherlink#Solution_methods
http://en.wikipedia.org/wiki/Slitherlink#Solution_methods

4.2 Mixed Procedures

(a) (b)

(c) (d)

(e)

Figure 4.5.: 4.5a the initial puzzle, (b) the SAT solver returned a ”wrong” as-
signment. (c) and (d) The variables of the lines of the wrong loop
are grouped in a negated conjunction: ¬

∧
l∈{loop} l and added to

the SAT solver.(e) After some iterations the correct solution is re-
turned by the solver.

17

5. Implementation

5.1. Class Hierarchy

5.1.1. Propositional Logic Implementation

In order to encode the Slitherlink puzzle in Java, an object oriented definition
of propositional logic was defined:

• Formula. The base interface for a formula in propositional logic.

– Formula convertToCNF(): returns an equisatisfiable formula in
CNF.

– boolean isLiteral(): returns true iff the formula is a literal (normal
or negated variable).

– int toNum(): if the formula is a literal, returns the number used
for the SAT solver.

• Operator implements Formula. The base class for a binary operator.
Manages two formula arguments f1 and f2. The subclasses of Operator
include: And, Or, Not, Implication and Biimplication.

• Variable implements Formula. The base class for a variable. Tracks
an ID with every instance and saves all instances in a static list. Can be
either set or not set (by SAT solver).

• Set(Formula... forms). A class which groups various formulas in a set.

Example 5.1. The following code

Formula f = new Imp l i c a t i on (
new R() ,
new And(new R() ,new R())) ;

System . out . p r i n t l n (f) ;
System . out . p r i n t l n (f . convertToCNF ()) ;

leads to the output

(R1 => (R2 ˆ R3))
((−R1 v R2) ˆ (−R1 v R3))

Furthermore all of the boolean helper functions of Section 3.3 were imple-
mented using the definitions mentioned above.

18

5.1 Class Hierarchy

5.1.2. Encoding Implementation

EncodedGame(int m, int n) is the abstract base class for an encoding of a
m× n puzzle. It contains the following fields and methods:

• static boolean USE PREWORK SOLVER: use the prework solver
as explained in Section 4.2.3

• static enum EXTERNAL ALGO: can be one of the following enums

– REACHABILITY ENCODING: use the reachability encoding of Sec-
tion 4.1

– LINE ALGO: use the line algorithm of Section 4.2

– FILL ALGO: use the fill algorithm of Section 4.2

• static enum CNF METHOD: can be one of the following enums

– STANDARD: use the standard CNF generation of Section 5.2.1

– TSEITIN: use the tseitin transformation of Section 5.2.2

• solve(Gamefield gf): generates the formula, converts it into CNF and
then starts the SAT solving process. If a solution is found the game field
is set to the first solution.

• abstract void getFormula(): all subclasses implement this method.
Each subclass thereby adds arbitrary formulae to a blocking queue.

Due to the large size of the formulas, for even small puzzles, a small perfor-
mance improvement was made by improving the formula generation:
The problem with first generating the formula and then feeding it to the solver,
was that the formula was therefore stored two times in the memory (the first
time in the representation explained in Section 5.1.1 and the second time in the
SAT solver itself). The memory usage could be cut in half by using a blocking
queue which ensures that at most 10 subformulae stay in memory before they
are fed to the solver. Furthermore concurrent programming was used to gain
performance with multicore systems:

1. In the solve method a new thread is started which only calls the getFor-
mula method and therefore feeds the blocking queue.

2. The main thread meanwhile ”consumes” the formulae of the blocking
queue by:

• converting the formula into CNF

• and passing them to the SAT solver

Example 5.2. A small excerpt of the encoding implementation of the Equation
3.15.

// hFie ld and vFie ld are the ar rays f o r the l i n e v a r i a b l e s
Set l i n e s = new Set (hFie ld [i] [j] , hFie ld [i + 1] [j] ,

vF ie ld [i] [j] , vF ie ld [i] [j + 1]) ;

19

5 Implementation

// currentGf i s the gamef i e ld o f the e x i s t i n g a p p l i c a t i o n
int va l = currentGf . getValue (j , i) ;
i f (va l == 0) {

// cn f i s the b lock ing queue
cn f . put (new ExactNone (l i n e s)) ;

} . . .

5.2. Generating a CNF

There are at least two different techniques implemented to generate the CNF
formulas: The standard approach [7, page 58-65] and the Tseitin Transforma-
tion [8, page 12,13].

5.2.1. Standard approach

This approach works by succesively eliminitaing non-CNF operators and using
the distribution laws of ∧ and ∨ to obtain a CNF formula. This can lead to a
exponential blowup of the size of the formula.

5.2.2. Tseitin

The advantage of the Tseitin Transformation, is that it increases the size of
the formula only linearly. This is achieved by introducing new variables to a
subformula.
The optimized version needs the formula to be in NNF (negations are pushed to
the variables) and therefore only needs a implication instead of a biimplication
per auxiliary variable:

tseitin(l) = l t′(l) = >, xl = l (auxiliary variable = l)

tseitin(φ) = xφ ∧ t′(φ) t′(p ∧ q) = (xp∧q → xp ∧ xq) ∧ t′(p) ∧ t′(q)
t′(p ∨ q) = (xp∨q → xp ∨ xq) ∧ t′(p) ∧ t′(q)

Thereby xφ denotes the newly introduced variable of the subformula φ and l
denotes a literal.

5.3. Trivial Cases

Trivial cases of the Slitherlink puzzle are those puzzles which are solvable by a
single loop around two adjacent 3-valued cells. The existing solver of [10] had
a problem with trivial cases because a pattern of two adjacent 3’s was resolved
to a configuration, which is not generally true (cf. Figure 5.1(a)).
To fix this problem the function ”trivialCases”, described in the Appendix
A, was implemented. It gets a m × n puzzle as an input and returns null if
there was no trivial case found and the solved puzzle otherwise. The function
just looks for the first adjacent cells with 3 values and builds the loop around
them. If the puzzle is now a valid solution it is returned.

20

5.4 GUI Improvement

(a) (b)

Figure 5.1.: (a) the solution of the prework function of [10], which is not solvable
any more, (b) the correct solution of a trivial puzzle

5.4. GUI Improvement

One further task of the thesis was to improve the GUI:
The application now includes an extended solver chooser. You can choose if
you want to use the ”Standard Solver” (of [10]) or the ones presented in this
thesis. Furthermore there were some graphical improvements for the buttons
and for the actual game field:

• The look and feel of the swing-application was changed to the more pleas-
ing ”Substance” [4].

• The game field is now drawn directly with the Graphics component of
Java.awt instead of using JPanel’s and JTextField’s.

• You can now zoom in/out using your mouse wheel.

• There is now a timer, which counts the seconds you need to solve a puzzle.

• You can now redo steps you have undone.

• The width of the line is now resizable with the slider beneath the ”Undo/Redo”-
buttons.

21

5 Implementation

Figure 5.2.: The old GUI

Figure 5.3.: The new GUI.

22

6. Evaluation

Another aim of the project was to evaluate the exisiting methods with the ones
presented in this paper. The following test environment was used for all of the
performance tests:

CPU AMD Athlon 64 X2 Dual Core 2.20GHz

RAM 2.0 GB

Operating System Windows 7 Ultimate

Java Version Java SE Runtime (build 1.6.0 17b04)

SAT4J Version SAT4J 2.2.2

6.1. Performance

We compare the runtimes to solve a puzzle using different configurations and
the solver of [10] (”Standard”). The configuration is thereby defined by 4
characters:

1. [T/P] the TwoLine1,2/PreSucc1,2 encoding is used.

2. [R/F] the Reach3 encoding/Fill algorithm is used.

3. [T/S] the encoding uses the tseitin/standard cnf conversion.

4. [T/F] the prework solver is turned on/off.

It turned out that, on average, the filling algorithm was faster than the linecount
algorithm, so it was used in the mixed procedures encodings.
Figure 6.1 shows the average time t in ms (y − Axis) it took to solve a puzzle
with n number of cells(x−Axis). We observe:

• The standard solver of [10] is the fastest solver.

• The fastest configurations are :

– PreSucc1,2 with the prework solver and Tseitin or without the pre-
work solver and the standard CNF conversion.

– TwoLine1,2 with the prework solver and the Tseitin CNF generation.

• The reachability encoding is not applicable to puzzles with more than 50
cells.

23

6 Evaluation

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

4500,00

5000,00

9 cells 25 cells 49 cells 100 cells 196 cells 400 cells 784 cells

PFST

PFTT

PFSF

PFTF

TFST

TFTT

TFSF

TFTF

TRTT

TRTF

PRTT

PRTF

Standard

Figure 6.1.: Solving time of the configurations and the Standard Solver in ms

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

4500,00

5000,00

9 cells 25 cells 49 cells 100 cells 196 cells 400 cells 784 cells

PFST

PFTT

PFSF

PFTF

TFST

TFTT

TFSF

TFTF

TRTT

TRTF

PRTT

PRTF

Standard

Figure 6.2.: SAT solving time of the configurations and the Standard Solver in
ms

Figure 6.2 shows a more optimistic time measurement, by only taking in
account the time the SAT solver needs to find all solutions. These times could

24

6.1 Performance

for instance be achieved, by caching the formulas in files on the hard drive.
It shows that the best encodings can even compete with the existing solver in
terms of speed.

As pointed out by one of the reviewers of the thesis, the runtime of the SAT
solver exceed the runtime of the normal solver, the bigger and more difficult
the puzzles get. In Figure 6.3 we see that out of the 7 puzzles 1 only 2 could
be solved by the existing solver (the solving process was interrupted after 5
minutes).

0,00

500,00

1000,00

1500,00

2000,00

2500,00

3000,00

3500,00

4000,00

4500,00

5000,00

235 (720 cells) 260 (720 cells) 670 (720 cells) 396 (1200 cells) 192 (1200 cells) 367 (1200 cells) 100 (1350 cells)

PFST

PFTT

PFSF

PFTF

TFST

TFTT

TFSF

TFTF

Standard

Figure 6.3.: Solving time of the configurations and the Standard Solver in ms

1The biggest puzzles with the highest difficulty from http://www.janko.at/Raetsel/

Slitherlink/index.htm were used. The puzzles that were used for the evaluation cor-
respond to the number on the x−Axis

25

http://www.janko.at/Raetsel/Slitherlink/index.htm
http://www.janko.at/Raetsel/Slitherlink/index.htm

6 Evaluation

6.2. Encoding Sizes

Next we compare the encodings by the number of variables they use and the
number of clauses they generate. Figure 6.4 shows the number of variables
generated for each configuration and Figure 6.5 shows the number of clauses
generated for each configuration.
We observe:

• that even small puzzles encoded with Reach3 generate huge formulas, no
matter if it is transformed with Tseitin or the standard approach.

• that the Tseitin transformations generally generate more variables, while
reducing the number of clauses.

0,00

20000,00

40000,00

60000,00

80000,00

100000,00

120000,00

140000,00

160000,00

9 cells 25 cells 49 cells 100 cells 196 cells 400 cells 784 cells

PFS

PFT

TFT

TFS

PRT

TRT

Figure 6.4.: Number of variables generated with configuration

0,00

200000,00

400000,00

600000,00

800000,00

1000000,00

1200000,00

9 cells 25 cells 49 cells 100 cells 196 cells 400 cells 784 cells

PFS

PFT

TFS

TFT

PRT

TRT

Figure 6.5.: Number of clauses generated with configuration

26

7. Conclusion

Slitherlink puzzles are fun and challenging1. The generation of a solver, which
solves puzzles faster than humans, was even more fun.
In this work such a solver was presented, integrated into the existing application
and evaluated. The solver uses SAT-encodings of the rules of Slitherlink and
an ”Iterative SAT”-technique to speed up the solving process.
As it turned out, the solving process presented in this work was not as fast as
the existing solver for small to medium-sized puzzles. But it was shown that
the old approach has problems with big puzzles, not generated by the program
itself. Most of these puzzles could only be solved by the techniques introduced
in this work. I am confident that with more powerful SAT solvers and more
optimized encodings, all instances could be solved as fast as with the trial-and-
error solver.
Further improvements that could be made, include:

• Linear encodings of the ExactlyOne(A)/ExactlyTwo(A) properties men-
tioned in Section 3.3

• Cache the formulas on the hard drive, instead of generating them in run-
time

• Better encodings of Rule 3

• Better CNF converters

• Faster SAT solver

1Some sites with slitherlink puzzles:
http://de.puzzle-loop.com

http://www.krazydad.com/slitherlink/

http://www.janko.at/Raetsel/Slitherlink/index.htm

For Android Users: market://search?q=pname:jp.ne.sakura.knatt.slitherlink

27

http://de.puzzle-loop.com
http://www.krazydad.com/slitherlink/
http://www.janko.at/Raetsel/Slitherlink/index.htm
market://search?q=pname:jp.ne.sakura.knatt.slitherlink

Bibliography

[1] MiniSat. http://minisat.se.

[2] SAT4J. http://www.sat4j.org/.

[3] Solving Slitherlink puzzles with a CSP solver. http://bach.istc.

kobe-u.ac.jp/sugar/puzzles/slitherlink.html.

[4] Substance - Java Look & Feel. https://substance.dev.java.net.

[5] Wikipedia - Slitherlink. http://en.wikipedia.org/wiki/Slitherlink.

[6] A. P. Daniel Le Berre. On SAT Technologies for dependency management
and beyond. http://www.mancoosi.org/papers/leberre-sat-beyond.

pdf.

[7] M. Huth and M. Ryan. Logic in Computer Science 2nd ed. Cambridge
University Press, 2004.

[8] D. Krning and O. Strichman. Decision Procedures. Springer Verlag, 2008.

[9] C. Terzer. Nurikabe as SAT Problem. Bachelor’s thesis, Computational
Logic Group, University of Innsbruck, 2007.

[10] L. Thuile. Slitherlink. Bachelor’s thesis, Computational Logic Group, Uni-
versity of Innsbruck, 2008.

[11] D. S. Weld. Recent Advances in AI Planning, 1998. http://www-imai.

is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf.

[12] T. YATO. Complexity and completeness of finding another solution and
its application to puzzles, 2003. http://www-imai.is.s.u-tokyo.ac.jp/

~yato/data2/MasterThesis.pdf.

28

http://minisat.se
http://www.sat4j.org/
http://bach.istc.kobe-u.ac.jp/sugar/puzzles/slitherlink.html
http://bach.istc.kobe-u.ac.jp/sugar/puzzles/slitherlink.html
https://substance.dev.java.net
http://en.wikipedia.org/wiki/Slitherlink
http://www.mancoosi.org/papers/leberre-sat-beyond.pdf
http://www.mancoosi.org/papers/leberre-sat-beyond.pdf
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf

A. Trivial Cases

Algorithm 4 trivialCases

Input: a m× n Slitherlink puzzle
Output: a trivial solution or null if none could be found

1: for x := 0 to N − 1 do
2: for y := 0 to M − 1 do
3: if value of cell (x, y) = 3 then
4: if x < N − 1 and value of cell (x+ 1, y) = 3 then
5: draw loop around cells (x, y) and (x+ 1, y)
6: if solution valid then
7: return puzzle
8: else
9: return null

10: end if
11: end if
12: if y < M − 1 and value of cell (x, y + 1) = 3 then
13: draw loop around cells (x, y) and (x, y + 1)
14: if solution valid then
15: return puzzle
16: else
17: return null
18: end if
19: end if
20: end if
21: end for
22: end for
23: return null

29

	Introduction
	SAT Solving
	Content

	Slitherlink
	SAT Encoding for Slitherlink
	Boolean formulae and SAT
	Formal Definition of Slitherlink
	Boolean Helper Functions
	Encoding Slitherlink Rules 1 & 2

	Tackling the 1 Loop Problem
	Reachability Encoding
	Mixed Procedures
	Fill Algorithm
	Linecount Algorithm
	Optimizations

	Implementation
	Class Hierarchy
	Propositional Logic Implementation
	Encoding Implementation

	Generating a CNF
	Standard approach
	Tseitin

	Trivial Cases
	GUI Improvement

	Evaluation
	Performance
	Encoding Sizes

	Conclusion
	Bibliography
	Trivial Cases

